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Abstract me quantum Minkowski spacetime has real ~tructure and this Seems to be 
contradictive to the differential calculus in it. Dual differentiations are introduced Io solve 
this problem. This duality can be extended 10 differential calculus in any C‘-algehra. 

Non-commutative geometry is an active research topic in modem mathematics and 
also a new formulation for spaces and fields in modern physics [I-lo]. The relativistic 
quantum field theory constructed in conventional Minkowski spacetime is perhaps not 
applicable when physics is studied at the sub-microscopic scale [ll]. Therefore the 
quantum Minkowski spacetime based on the q-deformed Lorentz group, [ll-181, 
which is essentially non-commutative, was suggested. The differential calculus in 
this space is important in order to formulate field theories, and many authors have 
studied it [12,13,17,18]. However, there is still an ambiguity to be solved, i.e. the 
contradiction between the reality of the space and the differential in the space, the 
former of which is physically required and important. 

A method of constructing differential calculus in quantum spaces has been 
suggested by Wess and Zumino [19]. They introduced Cartan’s exterior differentiation 
d into the space, and the differential algebra A is then generated by ‘coordinate’ d‘ 
and its differential 

E’ E dx’ (1) 
modulo some commutation relations. A is graded according to the order p in p‘, 

N 

A = @ A ~  (2) 

d : A, - A,+, 

p = 0  

where N is a dimension of the space, and the operation d is a mapping in A, 

(3) 
which satisfies the axioms 

(4) 
d 2 = 0  (Cartan rule) 

(Leibniz rule) I d(fg)  = ( d f ) g +  (-l)P(’)f(dg) 
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where p( f )  is the order of the element f in the algebra. They also defined partial 
differentiation a, through 

d = [ p a ,  (summed over h ) .  (5) 

Then the calculus is determined by the requirement of consistency, starting with the 
commutation relations for coordinate xp. Furthermore Carow-Watamura el af [ZO] 
pointed out that when a metric exists in a quantum space, the algebra becomes 
a Birman-Wenzl-Murakami algebra [21,22]. Thii is also the case of quantum 
Minkowski space. By means of the metric gfiv the quadratic invariant centre of 
the algebra is 

J = g p v x p x y  (6) 

and the subscript of partial differentiation can be transformed to a superscript, 

a” = g&”O, (7) 

where g”“ is the inverse of g,,. According to this method the differential calculus 
in quantum Minkowski space (m compact tensor form) is [17,18] 

where 

P,(i = 1, A, S) are the projective operators for singlet, antisymmetric and symmetric 
multiplets, respectively, and 2 is the R matrix of the vector representation of 
quantum group SL,(Z,C) (q-deformed h r e n k  group). With a proper choice of 
basis ( p  = 0,+,3,-)  the commutation relation for coordinate x” is 

x u x +  - x + x u  = x u x 3  - X3XU = xu+- - 2- I”  = 0 

+ 3 -  -1 3 + = W x u x t  

q x 3 x -  - q-‘x-x3  = w x ~ x -  

++z- - I-++ = W ( X  - x )x 

q x x  q x x  
(9) 

3 U 3  

where 
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and the invariant metric is 

0 0 0  

S”” - ( ~ , ~ = 0 , + , 3 , - ) .  (10) 
0 -q-’ 

This differential calculus is covariant under quantum Lorentz transformation 

xi” = L’,x” €1” = L ’ , y  alp = L”,ay (11) 

where the quantum Lorentz matrix L ” ,  satisfies the Yang-Baxter relation 

~ Z , , L , L ,  = L,L,@,,. 

and the 7?, matrix itself satisfies Yang-Baxter equation 

7Z127i231i,2 = 7?,237Z,27i23. (13) 

Now the problem is that, in the quantum group SLq[2,C) and its representation 
spaces regarded as a (?-algebra, the *-conjugation has been introduced, which obeys 
the axioms 

(14) 
( f ” Y  = f (idempotence) 

{ (fg)’ = g* f” (algebraic antihomomorphism) 

for any element f and g in the algebra, and quantum Minkowski space is a ‘real’ 
representation of the quantum group SL,[2,@) with real q [see 1121). This means 
that there exists a relation for xp and its conjugation 

[x’ )”  = c p y x y  (15) 

where C = ( C p , )  is a real matrix invariant under a quantum Lorentz transformation. 
Explicitly the matrix C is 

/ 1 0  0 o \  

However it is not difficult to see that the operations d and * must be non-commutative, 
i.e. [df)* f; d(f’), because the Leibniz rule for exterior differentiation and the 
algebraic antihomomorphism for *-conjugation contradict their commutivity in the 
case of general non-commutative algebra, and also the commutation relations (8) 
are not consistent if ( E ” ) ’  = C P y ( ” .  Therefore it is not possible to extend *- 
conjugation from the algebra A, to the graded algebra A, if one wants to retain all 
the fundamental axioms. 

Tb solve this problem we obselved that the form of the Leibniz rule is dependent 
on the direction in which the differential applies. Quite parallel to (4) we can also 
introduce right differential d which obeys the axioms 

c 
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and the new element 
* 

q” E x P  d (18) 

then x p  and q@ generate another graded algebra A‘. We also define right partial 
differentiation a, through 

- 
c c  

d = a ,  q” 

and raise its subscript by 

- @  
17’ and 8 also transform under quantum Lorentz transformation as 

Then we have a right differential calculus in the algebra A’, comparable with equation 
(8)7 

- C P  
in which TJ = (.I”), a=  ( a  ). We call the right differential d as dual of the previous 
one which is redenoted by left action, 

+ 

df E d  f ‘(23) 

and, a priori, there is no direct connction between q’ and <’. If A‘ itself is still not 
consistent under *-conjugation, we now assume an extended algebra A” generated by 
{xJ’,c*,$) and graded by d and d ,  with both differentials cooperating according 
to the rule 

- C 

- e -  e - -  
( d  f) d = d  ( f d ) = d  f d = O  

and with the *-conjugation by the relation 

(Z f)’ = (f’) ;i (f U)’ =;i (f’). 
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It is easy to see that the conjectures (4), (17), (24), (14), (25) are consistent, and the 
duality of differentials is, in some sense, *-conjugation in the algebra A“. From (24) 
we add to (8) and (22) the mixed commutations 

to complete the differential calculus in A”. The two sets of differentials 5’ and qfl 
are conjugate with one another according to (15) and (29, 

(y)* = C’,q” (q”* = CP“y  (27) 

C P  - P  
and, similarly, so are a and a , 

3 P  C Y  - P  -” 
( a  )* = C”, a ( a  ) ‘ = C P ,  a . (28) 

By equations (15), (27), (28) and the fundamental rules (14) we can prove that the 
calculus defmed by (8), (22), (26) is self-consistent under *-operation Therefore, we 
see that introducing dual differentials is necessary. More generally this duality can be 
extended to differential calculus in any non-commutative C’-algebra. 

When q -+ 1, this differential calculus approaches its classical limit, i.e. the d‘ 
commute with each other and with 5” and rp, but 5’ and 0’ are anticommutative. 
In this case we can put 

17” = E ”  (f 2, = (Z f )  (29) 

without contradicting the above relations and, in fact, this means that 

(df)* = (-l)P(f)df’. (30) 

Therefore we recover the usual Cartan differential calculus compatible with *-conjuga- 
tion in commutative geometry. 

Remark. Relations of the type tfi = with different from C were also 
suggested to avoid the extension of A to A”. The difbculty here is to find a suitable 
matrix c, which is invariant under quantum b r e n k  transformation and make all 
the commutation relations in 4 (equation (8)) self-consistent under *-conjugation, 
especially those for the mixed products of zP ,  5’ and P, because this requires a 
series of compatibility conditions for matrices C, 6 and ’& and I failed to find such 
a matrix e. 
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